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The movement  of a s t r eam in a channel with permeable  walls is examined on the basis of the 
energy equation. An analytical  descript ion is obtained for  the distribution of the mean axial 
or  radial  velocity at the wall along the length of the channel. 

In the design of many industrial  devices the problem ar i ses  of the velocity distribution of the s t r eam 
along the axis of a porous channel or of the calculation of the amount of mater ia l  passing through its wails 
at  any c ross  section.  Three different approaches to the solution of this problem are known. The f i r s t  of 
these, consist ing in the use of the Bernoulli  equation [1-3], has the drawback that i t  does not allow for 
energy effects ar is ing during the addition or separat ion of mass  to or  f rom the s t r eam.  In a number of 
cases  this resul ts  in large e r r o r s .  

The second approach is based on the momentum theorem or  the Meshcherski i  equation of the dynam ~ 
ics of bodies of variable mass  [4-8]. The one-dimensional  problem is usually solved in this case ,  while 
an isolated element of the continuous viscous medium is essential ly considered as a solid body. At the 
same time, the energy effects a r i s ing  during the variat ion in the mass  of the s t r eam are manifested through 
the medium of viscous forces  which per fo rm the work in a continuous medium. The work of the viscous 
forces  t rans forms  the energy of the separat ing or  combining mass  into heat (dissipation) or  mechanical  
energy (the res t ruc tur ing  of the axial velocity profile connected with the variat ion in flow rate) .  In the use 
of the Meshcherski i  equation this mechanism of energy t ransformat ion  escapes consideration,  and in the 
calculating equations there appear  coefficients whose use somet imes  leads to physically absurd results  [7]. 
If the movement  of the s t r eam is accompanied by thermal  effects,  such as in catalytic reac to rs  or  heat-  
exchange devices,  the Meshcherski i  equation becomes unsuitable in principle.  

In [9-12] the movement  of a s t r eam in porous channels in a laminar  mode is descr ibed by the Navier  
--Stokes equations.  Solutions are  obtained only for par t icular  cases with the law of blowing or suction 
through the side walls of the channel assigned in advance.  However, more  often it is necessa ry  to actually 
seek this law with the pa ramete r s  of the surrounding medium in which the channel is placed being unknown. 

Taking into account the observations made,  it seems most  natural  to solve the formulated problem 
on the basis of the energy equation. The energy approach to a cer ta in  extent permits  a more  co r r ec t  
es t imat  e of the effect of the momentum of the separat ing or  combining mass  on the base of the s t r eamand ,  
in addition, a more  co r r ec t  convers ion to the one-dimensional  problem and allowance for thermal  effects 
when necessa ry .  

The energy equation for  a steady, isothermal ,  incompressible  s t r eam in a channel of a rb i t r a ry  
shape has the form [14] 
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The f i r s t  integral  on the right side of the equation expresses  that par t  of the work pe r fo rmed  by viscous 
forces  which is expended in the format ion of the profile in an unstabilized liquid s t r eam.  

The second integral  on the right side of Eq. (1) expresses  the dissipation of energy,  while the integral 
on the ieft side expresses  the flux of mechanical  energy through the surface F bounding the e lementary  
volume under considerat ion.  

In the study of laminar  s t r eams  with a variable flow rate the energy equation wri t ten for  the instan- 
taneous values of the velocity and p res su re  can be used direct ly  in the form (1). For  a turbulent s t r eam 
it is n e c e s s a r y  to r e s o r t  to time averaging by the method of Reynolds [15]. 

Let us write the resu l t  of averaging the left side of Eq. (1): 

T 

dl 9V -]- P P -~- dF + g dF 9fd " 
�9 . 9 . P 
0 F F 

-- t [3/2oV(V')~_ ~ ' ]d I : .  (2) 
F 

Est imates  show that the second integral  on the r ight side of Eq. (2) is smal l  in compar ison with the f i r s t .  
The value V ' P ' / p  is considerably less than the value 3/2 (~7)2, which in turn does not exceed 6% of V2/2 on 
the average [15]. This fact  makes it possible to neglect  the integral  involving the average pulsation values 
in Eq. (2) with an e r r o r  of no more  than 6%. 

Pe r fo rming  the same operation on the right side of Eq. (1) and dropping the averaging notation, i . e . ,  
understanding V and P now to be the t ime-averaged  values of these quantities, we obtain 

9V( 'V~ v - -  4-gZ dF~vp Vj #V~ , OV h dFk 
/ 2 9 a x  h ~ Oxj / 

F F 
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F o~ 

do). (3) 

The las t  two integrals in Eq. (3) express  the average work of res t ruc tu r ing  of the pulsation velocity profile 
and the dissipation of pulsation energy,  respect ively .  

The stated problem -- finding the law of variat ion of the average velocity along the axis of a channel 
with per fora ted  walls -- is such that it is adequately solved in a one-dimensional  approximation,  averaging 
the quantities enter ing into Eq. (3) with respec t  to surface or  volume. 

If one considers  a one-dimensional  Symmetr ica l  s t r eam with a variable flow rate in a horizontal  cy-  
l indrical  channel of radius r ,  thenby integrating on the left side of Eqo (3) over  the surface bounding the 
volume w = 7rr2dx we obtain 

~ r  z 

pv + ~- -S  gz dF-- -OU- pU + T T 
F 0 

(4) 

Here s2w2/2 is the fract ion of the kinetic energy  of axial motion t ranspor ted  through the la tera l  su r -  
face of the channel and d~ is the averaged right side of Eq. (3). With the averaging method adopted the 
value of �9 does not depend on the radial  position at the end surface 77. 

Let us conduct the averaging operation over  the surface N in Eq. (4), introducing the averaging co r -  
re ctions 
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As a r e s u l t  of the i n t e g r a t i o n  and  a v e r a g i n g  o v e r  the s u r f a c e  of a d i f f e r e n t i a l l y  s m a l l  vo lume on the 
l e f t  s i de  of E q .  (3) we ob t a in  

ov + ~ + e z  d F = ~ r - p ~  ~ y + ~ w  + x 
�9 9 
F 

/ e~ v~ :' Po ) dx. (5) -- 2nrc~gv o l - 2  ~- 
2 // p 

The f i r s t  t e r m  on the r i g h t  s i de  of Eq .  (5) is  the long i tud ina l ,  and  the s e c o n d  t e r m  the r a d i a l ,  e n e r g y  f lux 
th rough  the l a t e r a l  s u r f a c e  of the channe l .  

An a n a l y s i s  of n u m e r o u s  e x p e r i m e n t a l  da ta  [4-8] shows  tha t  the a v e r a g i n g  c o r r e c t i o n s  ~1 and a 2 a r e  
v e r y  c l o s e  to 1 and they  can  be  t aken  as  equa l  to 1 wi th  an  e r r o r  a c c e p t a b l e  fo r  t i m e  a v e r a g i n g .  

F u r t h e r m o r e ,  a l l o w i n g  fo r  the o b s e r v a t i o n  c o n c e r n i n g  ~1 and oz 2 and  the cond i t ion  of m a t e r i a l b a l a n e e  
v 0 = - - r / 2 ~  �9 8w/Sx ,  one can  w r i t e  (in a h o r i z o n t a l  channel)  

2 , P /dF=~r29 - - 2  w'w~-T-v~v~176 . (6) 
�9 P 
F 

H e r e  and  b e l o w  the  p r i m e ,  the  f i r s t  d e r i v a t i v e  of  t he  c o r r e s p o n d i n g  v a l u e  with  r e s p e c t  to x i s  deno ted .  

L e t  us  now t u r n  to the r i g h t  s ide  of Eq .  (3).  We a s s u m e  tha t  the a v e r a g e  d i s s i p a t i o n  of e n e r g y  on the 
b a s i s  of w e l l - k n o w n  s e m i e m p i r i c a l  t h e o r i e s  can  be  e x p r e s s e d  in the f o r m  

dNdis =ToW2~rdx= P 8 2urdx. (7) 

The c o e f f i c i e n t  of f r i c t i o n  X in a p o r o u s  channe l  is a func t ion  of the r a d i a l  v e l o c i t y  a t  the w a l l .  W a t l i s  [6] 
ob t a ined  the fo l lowing  dependence  e x p e r i m e n t a l l y  f o r  the c a s e  of outflow: 

k ~ ~o -~- 3.56 ~ v~ . (8) 
W 

A c c o r d i n g  to W a l l i s  the e n e r g y  d i s s i p a t i o n  is  equa l  to 

dNdis=(io+3,56cpv~ 9w~ 2~rdx. (9) 
\ w /  8 

I t  is  s e e n  f r o m  the l a t t e r  equa t ion  tha t  La c o m p a r i s o n  wi th  m o v e m e n t  in a channe l  wi th  s o l i d  w a l l s  the a d d i -  
t i ona l  e n e r g y  l o s s e s  c a u s e d  by  the p r e s e n c e  of outf low have  the p r o p o r t i o n a l i t y  coe f f i c i en t  3 . 5 6  ~ (v0/w).  
We f u r t h e r  a s s u m e  tha t  in the a v e r a g e  f o r m  the f o r c e s  a r i s i n g  d u r i n g  the v a r i a t i o n  in flow r a t e  in a p o r o u s  
channe l  a r e  d e t e r m i n e d  by  the M e s h c h e r s k i i  equa t ion  [5]: 

dm 
F = ~ (~ -- vl) -~-. (10) 

The + s ign  deno te s  r e m o v a l  of m a s s  and  the - -  s i gn  i t s  a d d i t i o n  to the f low.  He re  v 1 is  the p r o j e c t i o n  of 
the  v e l o c i t y  of the r e m o v e d  o r  a d d e d  m a s s  onto the ax i s  of m o t i o n  whi le  d m / d t  is  the amoun t  of m a t e r i a l  
be ing  a d d e d  o r  r e m o v e d  p e r  uni t  t i m e ,  equa l  in m a t e r i a l  b a l a n c e  to # (0w/0x) vr2dx.  By i n t r o d u c i n g  the 
no t a t i on  v l / w  = e we can  w r i t e  the w o r k  of th is  f o r c e  p e r  un i t  t ime :  

dA ~ 9w%v' (1 - -  e) =Pdx. (11) 

An i m p o r t a n t  m o m e n t  in the c o n s i d e r a t i o n  of the m o t i o n  of a v i s c o u s  m e d i u m  is the q u e s t i o n  of how this  
w o r k  is d i s t r i b u t e d  b e t w e e n  d i s s i p a t i o n  and r e v e r s i b l e  m e c h a n i c a l  e n e r g y .  

To a c e r t a i n  e x t e n t  the a n s w e r  to th is  q u e s t i o n  is  con t a ined  in the w o r k  of W a l l i s  m e n t i o n e d .  If i t  is  
a s s u m e d  that  a l l  the w o r k  c a l c u l a t e d  f r o m  E q .  (11) is  fu l ly  d i s s i p a t e d  then  by c h a r a c t e r i z i n g  the e n e r g y  
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F i g .  1.  Var i a t ion  in a v e r a g e  ax ia l  ve loc i ty  of  a i r  
a long a p e r f o r a t e d  tube 0 .5  m long and 0 .106  m in 
d i a m e t e r :  a) q~ = 0 . 2 : 1 5  Re 0 = 66 ,000;  2) 78,100;  
3) 83 ,400;  4) 120 ,300;  b5 q~ = 0 . 1 5 : 5 5  77 ,300;  6) 
120 ,300;  c)q~ = 0 . 1 :  7 ) 7 7 , 6 0 0 ;  8 ) 9 9 , 4 0 0 ;  d)~o 
= 0 . 0 5 :  9) 79 ,800;  105 120 ,300 .  

loss  due to the outflow of m a s s  th rough  the coef f ic ien t  A0m on.e can wr i te  (with s = 0) 

kom = 8q~ v~  (12) 

Thus, the total work of the Meshcherskii forces expressed in the form of dissipation is equal to 

W 3 
d A  = 8 ~  v~ p -  2 ~ r d x .  (13) 

w 8 

A c c o r d i n g  to the e x p e r i m e n t s  of Wal l i s ,  b a s e d  on Eq .  (8) a p a r t  of this e n e r g y  ac tua l ly  is d i s s ipa ted  
(3 .56 #o (v0/w 5 p (w3/85 2~rrdx], and consequent ly  the o the r  p a r t  (8-3 .56)  r (v0/w 5 p (w3/85 2~rdx is m e c h a n i -  
ca l ly  r e v e r s i b l e  e n e r g y .  Taking  into accoun t  the obse rva t i ons  made  and Eq.  (135, we can wr i te  the r igh t  
s ide  of Eq .  (35 in the f o r m  

7)0 ~.j3 
d ~  : d A  - -  dNdi s -= 0.88 q~ - -  9 w3 2 n r d x  - -  Lo9 - -  2 ~ r d x .  (14) 

w 8 8 

The quant i ty  0 .88  qo (v0/w) O ( w3/85 2~rrdx can  be neg lec ted ,  s ince  the e r r o r  in t roduced  t ies in the s a m e  
range  as the e r r o r  a l lowed in a v e r a g i n g .  

Now Eq .  (3) can be wr i t t e n  in the f o r m  

p~ 3 -- e '~ , w ~ 
', - -  ww"  + VoVo + k0 ~ - r  = 0, (15) 

p 2 

while in d i m e n s i o n l e s s  f o r m  we wil l  have 

' 2 I __~2 / r / u"u' 3 kol 
u 'u  ~- u s = 0. (16) 

2 

The equat ion  obta ined is d i s t inguished  by the fac t  tha t  i t  does not  conta in  a s ingle  e m p i r i c a l  coef f ic ien t  r e -  
qu i r ing  d e t e r m i n a t i o n  by addi t ional  e x p e r i m e n t s .  

The coe f f i c i en t  k 0 is ca lcu la ted  f r o m  wel l -known equat ions  as  a funct ion of the condi t ions .  In o r d e r  
to f inal ly  obtain  an equat ion  d e s c r i b i n g  the d i s t r ibu t ion  of the a v e r a g e  ve loc i ty  a long the channel  it is n e c -  
e s s a r y  to supp lemen t  Eq .  (165 with the a p p r o p r i a t e  outflow equat ion  connec t ing  the p r e s s u r e  inside and 
outs ide  the channel .  

A s u m m a r y  of the d i m e n s i o n l e s s  s e c o n d - o r d e r  d i f fe ren t ia l  equat ions  fo r  the case  of outflow into a 
qu i e scen t  m e d i u m  such  as  the a t m o s p h e r e  is p r e s e n t e d  in our  r e p o r t  [13]. T h e r e  we a l so  p r e s e n t  some  
so lu t ions ,  as  wel l  as  the r e s u l t s  of e x p e r i m e n t s  with the l a m i n a r  m o v e m e n t  of w a t e r  in a cy l i nd r i ca l  
channel  20 m m  in d i a m e t e r  and 2 m long in the l a t e r a l  su r f ace  of  which the re  w e r e  cap i l l a r i e s  in tended fo r  
d i s t r ibu t ion  of the s t r e a m .  

The r e s u l t s  of ca lcu la t ions  and of e x p e r i m e n t a l  s tudies  of c e r t a i n  types  of r ad i a l  ca ta ly t ic  r e a c t o r s  
w e r e  publ ished in [17]. 

In the p r e s e n t  a r t i c l e  we p r e s e n t  only data conce rn ing  the m o v e m e n t  of a tu rbu len t  s t r e a m  in a p e r -  
f o r a t ed  cy l i nd r i c a l  channe l  with d i s c h a r g e  into the a t m o s p h e r e .  

1183 



2 p  

48 

0,a 

@ 

0 = 

u ~ j  0 

. . . . . .  i I 

O I , - ~  

42 

f?f, "a o.z @ ~ o8 y 
Fig .  2. D imens ion l e s s  flow ra te  through the l a t e r a l  s u r -  
face of a channel accord ing  to I. E.  I d e l ' c h i k ' s  data  [18]. 

fo rm 
The d i f fe ren t i a l  equation desc r ib ing  the ave rage  ve loc i ty  d i s t r ibu t ion  along the channel  axis  has the 

u"u' ' (17) -~- au 'u  + bu s = O, 

where  

a = 2  3--e2 

1 + ~  

The solut ion for  the boundary condit ions 

l + ~ r  

y = O, u = 1, 

y = l ,  u = O  

(which co r r e sponds  to the end of the channel  being blocked) is p r e sen t ed  in [13]. 

As is seen,  a t  l a rge  Reynolds numbers  Re ,  when k 0 = const ,  Eq.  (17) is invar ian t  with r e s p e c t  to Re 
and the coeff ic ients  a and b a r e  cons tant .  

The e x p e r i m e n t a l  appara tus  cons i s t ed  of a p e r f o r a t e d  tube 0.105 m in d i a m e t e r  with a p reconnec ted  
sec t ion  20 d i a m e t e r s  long to, which up to 600 m3/h of a i r  was suppl ied.  The p re sence  of the p reconnec ted  
sec t ion  prov ided  fully developed turbulent  flow at  the en t rance  to the pe r f o r a t e d  tube.  The ax ia l  veloci ty  
p rof i l es  in s e v e r a l  c r o s s  sec t ions  along the length of the tube were  m e a s u r e d  by means  of P rand t l  tubes 
shif ted with a spec i a l  coord ina te  device or  by t h e r m o a n e m o m e t e r  pickups and the ave rage  ve loc i ty  was 
ca lcu la ted .  Tubes with pe r fo r a t ed  sec t ions  0.5 and 1.0 m long were  used  for  the e x p e r i m e n t s .  As an 
i l l u s t r a t ion ,  r e su l t s  a r e  p r e s e n t e d  in F i g .  1 only for  the tube 0.5 m long and 0.106 m in d i a m e t e r .  The 
m e a s u r e m e n t  of the d imens ion les s  veloci ty  u ave raged  over  the c r o s s  sec t ion  is given along the d imens ion-  
l e s s  length y of the tube for  d i f f e ren t  pe r fo r a t i on  of the l a t e r a l  s u r f a c e .  The so l id  l ines  a r e  cons t ruc ted  
f rom Eq.  (17) and the dashed line co r r e sponds  to the case  of uni form d i s t r ibu t ion ,  when u' = - -1 .  The 
va r i a t ion  in s ta t ic  p r e s s u r e  along the tube can be ca lcu la ted  f rom Eq. (16). 

The e x p e r i m e n t a l  data a r e  in s a t i s f a c t o r y  a g r e e m e n t  with the theore t i ca l  curves  for  d i f ferent  ini t ia l  
Reynolds numbers  Re 0, which conf i rms  the i r  invar iance  with r e s p e c t  to this p a r a m e t e r .  
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The qualitative and quantitative effect of variat ion in the open c ross  section of perforat ion and in the 
geomet r ica l  dimensions of the channel d iscovered experimental ly  is in agreement  with the calculat ions.  
This is additionally confirmed by Fig.  2 in which the very  detailed data of I. E. IdeI 'chik [18] are  analyzed. 

Idel 'chik ca r r i ed  out his experiments  using a channel of square c ross  sect ion of 0 .2 • 0.2 m and 
6.3 m long. The theoret ical  curves in the figure (from top to bottom) cor respond  to increasing values of 
the coefficient of res is tance  ~ to the outflow of gas through the la tera l  surface of the channel, while the ex- 
per imental  points cor respond  to different values of Re 0. 

We note that the dimensionless normal  velocity at  the wall, equal to the modulus of the derivative u ' ,  
is laid out along the ordinate in Fig.  2. The e r r o r s  always increase  considerably when the derivative is 
used.  Despite this, one cannot help noting the sa t i s fac tory  agreement  between I. E. Idel 'chik ' s  m e a s u r e -  
ments  and the theoret ical  curves .  

The method presented in the present  r epor t  for calculating the distribution of a s t r eam in a porous 
channel has been tested in a ra ther  wide range of the varying conditions. Good correspondence between 
the calculated functions and the experimental  data was observed in all cases ,  which makes it possible to 
solve with sufficient reliabil i ty a number  of problems of pract ical  importance.  

NOTATION 

V: velocity vector of a moving elementary volume, m/see; x: longitudinal coordinate, m; p: density" 
of medium, kg/m3; gZ: potential energy (energy of the gravitational field) per unit mass, m2/sec2; ~: 
elementary volume under consideration, m3; F: surface bounding volume, m2; p: kinematic viscosity, 
m2/sec; P: local pressure, N/m2; Po: pressure at channel wall, N/m2; v: local radial velocity, m/see; 
Vo: radial velocity at wall (of channel), m/sec;  U: local axial velocity, m/see; w: axial velocity averaged 
over a cross section, m/see; ~: fraction of open cross section of lateral surface of channel; r: channel 
radius, m; I: channel length, m; q: dimensionless pressure; Wo: average velocity in initial cross section 
of channel, m/see; u: dimensionless average axial velocity, u = w/wo; y: dimensionless coordinate, y 
= x / l ;  q', u', u": corresponding derivatives with respect to dimensionless coordinate; ~0: coefficient of 
friction during stream movement in a channel with solid walls; 4: coefficient of resistance to outflow 
through lateral walls of channel. 
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