" DISTRIBUTION OF STREAMS IN CHANNELS
WITH POROUS WALLS
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The movement of a stream in a channel with permeable walls is examined on the basis of the
energy equation. An analytical description is obtained for the distribution of the mean axial
or radial velocity at the wall along the length of the channel.

In the design of many industrial devices the problem arises of the velocity distribution of the stream
along the axis of a porous channel or of the calculation of the amount of material passing through its walls
at any cross section. Three different approaches to the solution of this problem are known. The first of
these, consisting in the use of the Bernoulli equation [1-3], has the drawback that it. does not allow for
energy effects arising during the addition or separation of mass to or from the stream. In a number of
cases this results in large errors.

The second approach is based on the momentum theorem or the Meshcherskii equation of the dynam=
ics of bodies of variable mass [4-8]. The one-dimensional problem is usually solved in this case, while
an isolated element of the continuous viscous medium is essentially considered as a solid body. At the
same time, the energy effects arising during the variation in the mass of the stream are manifested through
the medium of viscous forces which perform the work in a continuous medium. The work of the viscous
forces transforms the energy of the separating or combining mass into heat (dissipation) or mechanical
energy (the restructuring of the axial velocity profile connected with the variation in flow rate). In the use
of the Meshcherskii equation this mechanism of energy transformation escapes consideration, and in the
calculating equations there appear coefficients whose use sometimes leads to physically absurd results [7].
If the movement of the stream is accompanied by thermal effects, such as in catalytic reactors or heat-
exchange devices, the Meshcherskii equation becomes unsuitable in principle.

In [9-12] the movement of a stream in porous channels in a laminar mode is described by the Navier
—Stokes equations. Solutions are obtained only for particular cases with the law of blowing or suction
through the side walls of the channel assigned in advance. However, more often it is necessary to actually
seek this law with the parameters of the surrounding medium in which the channel is placed being unknown.

Taking into account the observations made, it seems most natural to solve the formulated problem
on the basis of the energy equation. The energy approach to a certain extent permits a more correct
estimate of the effect of the momentum of the separating or combining mass on the base of the streamand,
in addition, a more correct conversion to the one-dimensional problem and allowance for thermal effects
when necessary.

The energy equation for a steady, isothermal, incompressible stream in a channel of arbitrary
shape has the form [14]
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The first integral on the right side of the equation expresses that part of the work performed by viscous
forces which is expended in the formation of the profile in an unstabilized liquid stream.

The second integral on the right side of Eq. (1) expresses the dissipation of energy, while the integral
on the left side expresses the flux of mechanical energy through the surface ¥ bounding the elementary
volume under consideration.

In the study of laminar streams with a variable flow rate the energy equation written for the instan-
taneous values of the velocity and pressure can be used directly in the form (1). For a turbulent stream
it is necessary to resort to time averaging by the method of Reynolds [15].

Let us write the result of averaging the left side of Eq. (1):
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Estimates show that the second integral on the right side of Eq. (2) is small in comparison with the first.
The value V'P'/p is considerably less than the value 3/2 (V')?, which in turn does not exceed 6% of V?/2 on
the average [15]. This fact makes it possible to neglect the integral involving the average pulsation values
in Eq. (2) with an error of no more than 6%.

Performing the same operation on the right side of Eq. (1) and dropping the averaging notation, i.e.,
understanding V and P now to be the time-averaged values of these quantities, we obtain
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The last two integrals in Eq. (3) express the average work of restructuring of the pulsation velocity profile
and the dissipation of pulsation energy, respectively.

The stated problem — finding the law of variation of the average velocity along the axis of a channel
with perforated walls — is such that it is adequately solved in a one-dimensional approximation, averaging
the quantities entering into Eq. (3) with respect to surface or volume.

If one considers a one-dimensional Symmetrical stream with a variable flow rate in a horizontal cy-
lindrical channel of radius r,thenby integrating on the left side of Eq. (3) over the surface bounding the
volume « = 7mridx we obtain

—}—%)dx:dd). (4)

Here &? w2/2 is the fraction of the kinetic energy of axial motion transported through the lateral sur-
face of the channel and d® is the averaged right side of Eq. (3). With the averaging method adopted the
value of & does not depend on the radial position at the end surface 7.

Let us conduct the averaging operation over the surface 5 in Eq. (4), introducing the averaging cor-
rections
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As a result of the integration and averaging over the surface of a differentially small volume on the
left side of Eq. (3) we obtain
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The first term on the right side of Eq. (5) is the longitudinal, and the second term the radial, energy flux
through the lateral surface of the channel.

An analysis of numerous experimental data [4-8] shows that the averaging corrections o and «, are
very close to 1 and they can be taken as equal to 1 with an error acceptable for time averaging.

Furthermore, allowing for the observation concerning oy and o, and the condition of materialbalance
vy = —r/2¢ . 8w/0x, one can write (in a horizontal channel)
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Here and below the prime, the first derivative of the corresponding value with respect to x is denoted.

Let us now turn to the right side of Eq. (3). We assume that the average dissipation of energy on the
basis of well-known semiempirical theories can be expressed in the form
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The coefficient of friction A in a porous channel is a function of the radial velocity at the wall. Wallis [6]
obtained the following dependence experimentally for the casa of outflow:

D=+ 3.56 g 2. (8)
w

According to Wallis the energy dissipation is equal to
3
dN gy = (xo + 3,560 i’i) i;”l— 2nrdx. (9
w

It is seen from the latter equation that in comparison with movement in a channel with solid walls the addi-
tional energy losses caused by the presence of outflow have the proportionality coefficient 3.56 ¢ (vy/w).
We further assume that in the average form the forces arising during the variation in flow rate in a porous
channel are determined by the Meshcherskii equation [5]:
dm
F =+ (w—ruv) —.

= ( 1) 7 {10)
The + sign denotes removal of mass and the — sign its addition to the flow. Here v, is the projection of
the velocity of the removed or added mass onto the axis of motion while dm/dt is the amount of material
being added or removed per unit time, equal in material balance to p (9w /9x) 7r2dx. By introducing the
notation v, /w = & we can write the work of this force per unit time:

dA =pwe' (1 — &) nrdx. . (1D

An important moment in the consideration of the motion of a viscous medium is the question of how this
work is distributed between dissipation and reversible mechanical energy.

To a certain extent the answer to this question is contained in the work of Wallis mentioned. If it is
assumed that all the work calculated from Eq.. (11) is fully dissipated then by characterizing the energy
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loss due to the outflow of mass through the coefficient Ay, one can write (with & = 0)

Y

o (12)

Thus, the total work of the Meshcherskii forces expressed in the form of dissipation is equal to

}'“Om = SCP

3
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According to the experiments of Wallis, based on Eq. (8) a part of this energy actually is dissipated
(3.56 ¢ (vy/w) p (w/8) 2rrdx], and consequently the other part (8-3.56) ¢ (v,/w) p (w’/8) 2nrdx is mechani-

cally reversible energy. Taking into account the observations made and Eq. (13), we can write the right
side of Eq. (3) in the form

3

3
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(14)
The quantity 0.88 ¢ (v,/w) p (w? /8) 27rdx can be neglected, since the error introduced lies in the same
range as the error allowed in averaging.
Now Eq. (3) can be written in the form
i’ 2 , 2
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while in dimensionless form we will have
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The equation obtained is distinguished by the fact that it does not contain a single empirical coefficient re-
quiring determination by additional experiments.

The coefficient A; is calculated from well-known equations as a function of the conditions. In order
to finally obtain an equation describing the distribution of the average velocity along the channel it is nec-

essary to supplement Eq. (16) with the appropriate outflow equation connecting the pressure inside and
outside the channel.

A summary of the dimensionless second-order differential equations for the case of outflow into a
quiescent medium such as the atmosphere is presented in our report [13]. There we also present some
solutions, as well as the results of experiments with the laminar movement of water in a eylindrical

channel 20 mm in diameter and 2 m long in the lateral surface of which there were capillaries intended for
distribution of the stream.

The results of calculations and of experimental studies of certain types of radial catalytic reactors
were published in [17].

In the present article we present only data concerning the movement of a turbulent stream in a per-
forated cylindrical channel with discharge into the atmosphere.
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Fig, 2, Dimensionless flow rate through the lateral sur-
face of a channel according to I, E, Idel'chik's data [181,

The differential equation describing the average velocity distribution along the channel axis has the
form

Wy - ou'n - bu? =0, (17
where
a—2 3¢ <‘P_l.)zy PR (_{ )3
1+8 \r 1+E\r
The solution for the boundary conditions
y=0, u=1,
y=1, u=0

(which corresponds to the end of the channel being blocked) is presented in [13].

As is seen, at large Reynolds numbers Re, when A; = const, Eq. (17) is invariant with respect to Re
and the coefficients ¢ and b are constant.

The experimental apparatus consisted of a perforated tube 0.105 m in diameter with a preconnected
section 20 diameters long towhich up to 600 m?/h of air was supplied. The presence of the preconnected
section provided fully developed turbulent flow at the entrance to the perforated tube. The axial velocity
profiles in several cross sections along the length of the tube were measured by means of Prandtl tubes
shifted with a special coordinate device or by thermoanemometer pickups and the average velocity was
calculated. Tubes with perforated sections 0,5 and 1.0 m long were used for the experiments. As an
illustration, results are presented in Fig. 1 only for the tube 0.5 m long and 0.106 m in diameter. The
measurement of the dimensionless velocity u averaged over the cross section is given along the dimension-
less length y of the tube for different perforation of the lateral surface. The solid lines are constructed
from Eq. (17) and the dashed line corresponds to the case of uniform distribution, when u' = —1. The
variation in static pressure along the tube can be calculated from Eq. (16).

The experimental data are in satisfactory agreement with the theoretical curves for different initial
Reynolds numbers Re;, which confirms their invariance with respect to this parameter.
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The qualitative and quantitative effect of variation in the open cross section of perforation and in the
geometrical dimensions of the channel discovered experimentally is in agreement with the calculations.
This is additionally confirmed by Fig. 2 in which the very detailed data of I. E. Idel'chik [18] are analyzed.

Idel'chik carried out his experiments using a channel of square cross section of 0.2 X 0.2 m and
6.3 m long. The theoretical curves in the figure (from top to bottom) correspond to increasing values of
the coefficient of resistance ¢ to the outflow of gas through the lateral surface of the channel, while the ex-
perimental points correspond to different values of Re,.

We note that the dimensionless normal velocity at the wall, equal to the modulus of the derivative u’,
is laid out along the ordinate in Fig. 2. The errors always increase considerably when the derivative is
used. Despite this, one cannot help noting the satisfactory agreement between I. E. Idel'chik's measure-
ments and the theoretical curves.

The method presented in the present report for calculating the distribution of a stream in a porous
channel has been tested in a rather wide range of the varying conditions. Good correspondence between
the calculated functions and the experimental data was observed in all cases, which makes it possible to
solve with sufficient reliability a number of problems of practical importance.

NOTATION

V: velocity vector of a moving elementary volume, m/sec; x: longitudinal coordinate, m; p:density
of medium, kg/m®; gZ: potential energy (energy of the gravitational field) per unit mass, m?/sec?; w:
elementary volume under consideration, m3; F: surface bounding volume, m?; v: kinematic viscosity,
m?/sec; P: local pressure, N/m?; py: pressure at channel wall, N/m?% v: local radial velocity, m/sec;
vy: radial velocity at wall {of channel), m/sec; U: local axial velocity, m/sec; w: axial velocity averaged
over a cross section, m/sec; ¢: fraction of open cross section of lateral surface of channel; r: channel
radius, m; I: channel length, m; q: dimensionless pressure; w, average velocity in initial cross section
of channel, m/sec; u: dimensionless average axial velocity, u = w/wy; y: dimensionless coordinate, y
=x/l; q', u', u": corresponding derivatives with respect to dimensionless coordinate; Ay coefficient of
friction during stream movement in a channel with solid walls; &: coefficient of rasistance to outflow
through lateral walls of channel.
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